

I R = Me

$$2 \mathbf{R} = \mathbf{H}$$

Isolation. The extract of the dried leaves (1 kg) with aqueous methanol was successively partitioned between H_2O , trichloroethylene and EtOAc. The residue obtained after evapn of the EtOAc extract (20 g) was chromatographed over Sephadex® LH-20 with MeOH- H_2O (1:4) and increasing amounts of MeOH, 13 fractions were collected. Fraction 8 (3300 mg) was separated by RLCC using the system $CHCl_3$ -MeOH-*iso*-PrOH- H_2O (8:7:1:6) in the descending mode and finally purified over LH-20 with *iso*-PrOH as eluent to yield 46 mg of 1. *R*_fs 1 on TLC silica gel 60F₂₅₄ were 0.16 in $CHCl_3$ -MeOH- H_2O (13:7:4, lower phase) 0.56 in EtOAc-MeOH- H_2O (100:17:13) and 0.77 in EtOAc-HCOOH- H_2O (15:3:4).

Mp. (uncorr) 196°, UV $\lambda_{\text{max}}^{\text{MeOH}}$ 376, 311 (sh), 260, + AlCl_3 433, 330 (sh), 270, + $\text{AlCl}_3 + \text{HCl}$ 433, 323 (sh), 269, 240 (sh); + NaOAc 397, 275 (sh), 262, + $\text{NaOAc} + \text{H}_3\text{BO}_3$ 482 (sh), 447,

429, 398 (sh), 293 (sh), 263, ^1H NMR (CD_3OD , solvent int standard, 400 MHz, δ -values, ppm) 7.80 (1H, *d*, 9 Hz, H-6'), 7.74 (1H, *d*, 15 Hz, H- β), 7.56 (1H, *d*, 15 Hz, H- α), 7.22 (1H, *d*, 2 Hz, H-2), 7.18 (1H, *dd*, 8 Hz, 2 Hz, H-6), 6.95 (1H, *d*, 8 Hz, H-5), 6.50 (1H, *d*, 9 Hz, H-5'), 4.80 (1H, *d*, 8 Hz, H-1''), 3.89 (3H, *s*, -OMe), 3.81 (1H, *dd*, 12 Hz, 2 Hz, H-6''), 3.74 (1H, *dd*, 12 Hz, 4 Hz, H-6''), 3.42–3.55 (3H, *m*, H-2'', H-3'', H-4''), 3.28–3.30 (1H, *m*, H-5'')

Acknowledgements—We are indebted to Dr Th Kämpchen and U. Grundey (Inst für Pharm Chemie der Universität Marburg) for running the NMR spectra and to Dr M Steinbach (Fachbereich Chemie der Universität Marburg) for recording the FD-mass spectra.

REFERENCES

- 1 Bohm, B A. (1982), in *The Flavonoids Advances in Research* (Harborne, J. B. and Mabry, T J., eds), pp 319-320 Chapman & Hall, London.
- 2 Hoffmann, B. and Hözl, J (1988) *Planta Med* **54**, 52.
- 3 Hoffmann, B. and Hözl, J (1988) *Planta Med*. (in press).
- 4 Ballard, R E (1975) Dissertation, The University of Iowa, Iowa City.
- 5 McCormick, S. P., Bohm, B A and Ganders, F R. (1984) *Phytochemistry* **23**, 2400
- 6 Chang, C J (1978) *Lloydia* **41**, 17
- 7 Fujita, M , Inoue, T. and Nagai, M (1985) *Yakugaku Zasshi* **105**, 240.

Phytochemistry, Vol 27, No 11, pp 3701-3703, 1988
Printed in Great Britain

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Press plc

CYANIDIN 3-ACETYL RUTINOSIDE IN *EURYA JAPONICA* BERRIES

NORIHIKO TERAHARA, MASA-ATSU YAMAGUCHI and KENICHI SHIZUKUISHI*

Department of Horticulture, Minami-Kyusyu University, Takanabe, Miyazaki 884, Japan; *Application Laboratory, Hitachi Corporation Naka Work, Katsuda, Ibaraki 312, Japan

(Received 20 January 1988)

Key Word Index—*Eurya japonica*; Theaceae; berries; acylated anthocyanin; acetic acid; cyanidin 3-acetylrutinoside

Abstract—The major anthocyanin in the berries of *Eurya japonica* was identified as cyanidin 3-acetylrutinoside, from chromatographic and spectral methods.

INTRODUCTION

The pigment in the black berries of *Eurya japonica* Thunberg was earlier identified as cyanidin 3-glucoside (Cy 3-G) by Shibata *et al.*[1] In the course of an acylated

anthocyanin survey, however, the major pigment from the same plant was observed to have different R_f values on TLC from authentic Cy 3-G. This prompted us to re-examine the anthocyanin. This paper deals with the elucidation of the major anthocyanin in the *Eurya japonica* berries.

RESULTS AND DISCUSSION

Dried black berries of *Eurya japonica* were extracted with aqueous methanol containing formic acid, and the major pigment was purified by standard procedures. To avoid the possibility of acetylation occurring during manipulation [2], acetic acid was replaced by formic acid throughout the isolation and purification processes. The major pigment **1** gave the chromatographic and spectral data listed in Table 1, compared with those of cyanidin 3-rutinoside (Cy 3-R) and 3-glucoside (Cy 3-G) which also occurred in the berries of *Eurya japonica* as minor pigments. When left standing in methanolic hydrochloric acid, pigment **1** decomposed to Cy 3-R, also obtained by alkaline deacylation of **1** (Table 1), which suggested that **1** was Cy 3-R acylated with an aliphatic carboxylic acid [3, 4]. In the IR spectrum for **1**, the presence of an acylating aliphatic acid was clearly indicated by the ester carbonyl absorption at 1720 cm^{-1} which could not be observed in the spectrum of Cy 3-R or Cy 3-G. However, TLC detection of the acid after alkaline deacylation failed, due to its volatility. Through careful HPLC analysis using acidic elution, acetic acid was detected in the deacylated product of **1** in comparison with the authentic acid (Table 1). Consequently, pigment **1** is an acetylated Cy 3-R.

SIMS measurement verified the structure of **1** from the molecular ion (m/z 637) corresponding to Cy 3-R mono-acetate and the fragment ions, 595 [$M-\text{Ac}$]⁺ to Cy 3-R, 449 (low intensity) to Cy 3-G, and 287 to cyanidin. Moreover, in the ^1H NMR spectrum, the strong singlet signal at δ 1.96 ppm could be assigned to the methyl protons of the acetyl residue, and the signals in the lower magnetic field than δ 6 ppm as typical cyanidin protons [5]. In addition, the carbon skeleton of the aglycone moiety of **1** was ascertained by the signal assignments of the ^{13}C NMR spectra (Table 2), in which the signals in the region lower than δ 95 ppm were quite similar to those of Cy 3-R or were on general accord with those of Cy or Cy 3-G reported by Ikuta *et al.* [6]. By comparison with the results obtained on violanin [7, 8], the stereostructure of each sugar of the rutinose in **1** was also determined by

^{13}C NMR and ^1H NMR measurements. The glucose was shown to be in the β -D-pyranose form because the anomeric proton resonated at δ 5.44 ppm with large coupling constant ($J = 7.4\text{ Hz}$) as well as those of H-3" ($J = 9\text{ Hz}$) and H-4" ($J = 9\text{ Hz}$). The other sugar moiety was confirmed to be α -L-rhamnopyranose for it had methyl group at δ 0.9 ppm ($J = 1.2\text{ Hz}$), and a large value at H-3" ($J = 9.7\text{ Hz}$). The interglycosidic linkage was determined by ^{13}C NMR measurement (Table 2) as rhamnosyl (1 \rightarrow 6)-glucose, [9, 10]. Moreover, the position of the acetyl group was at the 4-hydroxyl of rhamnose, since (Table 2) a shift downfield (+2 ppm) was observed only at C-4 of the rhamnose moiety in **1** [11]. Thus **1** in the berries of *Eurya japonica* is cyanidin 3-O-(6"-O-(4"-O-acetyl- α -L-rhamnopyranosyl)- β -D-glucopyranoside), a new anthocyanin. Although many acetylated anthocyanidin 3-monoglycosides and 3,5-diglycosides occur in grape skins [12-14], this is the first report of an acetylated anthocyanin in a fruit other than grape.

EXPERIMENTAL

Plant materials Black berries of *Eurya japonica* Thunberg were harvested at the campus of Minami-Kyusyu University and dried at 50° overnight. The authentic anthocyanins, Cy 3-G and Cy 3-R, were isolated from the seed coats of *Glycine max* [15] and from the flowers of *Antirrhinum majus* [16], respectively.

Isolation and purification Dried berries were (ca 100 g) extracted with $\text{MeOH}-\text{HCO}_2\text{H}-\text{H}_2\text{O}$ (10:1:10), and the pigments extract was conc under 40°. The concentrate was purified by prep PC (Toyo No 526 filter paper) in the solvents 10% HCO_2H and $n\text{-BuOH}-\text{HCO}_2\text{H}-\text{H}_2\text{O}$ (4:1:2) and TLC (Funakoshi Avicel SF cellulose) in 10% HCO_2H successively followed by Sephadex LH-20 CC with $\text{MeOH}-\text{HCO}_2\text{H}-\text{H}_2\text{O}$ (10:1:10) to give a red powder (ca 20 mg), **1**.

HPLC analysis HPLC analysis of **1** and the related pigments were performed with Hitachi L-6200 system, with Hitachi gel no 3056 reversed phase column (C_{18} , 150 mm \times 4 mm i.d.) at 520 nm at 30° using the solvent system of ref [17].

Acyl group analysis Pigment **1** (ca 1 mg) was deacylated with

Table 1 Chromatographic and spectral properties of *Eurya japonica* anthocyanin (**1**) and its acylating acid

Compound	$R_f \times 100$ in				Retention time		In 1% $\text{HCl}-\text{MeOH}$			AlCl_3 shift‡	
	10%				R_{11}	R_{12}	$\lambda_{\text{max}}^{\text{UV}}(\text{nm})$	$\lambda_{\text{max}}^{\text{VIS}}(\text{nm})$	E_{320}		
	AHW	BAW	BFW	HCO_2H^*							
<i>Eurya japonica</i> anthocyanin (1)	49	55	51	48	2.80		282	530	9	+	
Cyanidin 3-rutinoside and deacylated anthocyanin of 1	30	33	30	30	2.04		282	531	14	+	
Cyanidin 3-glucoside	15	33	30	15	2.01		282	530	8	+	
Acetic acid and acylating acid of 1						2.52					
Formic acid						1.61					

*TLC was carried on Funakoshi avicel SF microcrystalline cellulose plates using AHW = $\text{HOAc}-\text{HCl}-\text{H}_2\text{O}$ (15:3:82), BAW = $n\text{-BuOH}-\text{HOAc}-\text{H}_2\text{O}$ (6:1:2), BFW = $n\text{-BuOH}-\text{HCO}_2\text{H}-\text{H}_2\text{O}$ (4:1:2).

†HPLC was run with the reversed phase column at 30°, R_{11} detected at 520 nm using solvent A, B = 2:3, solvent A = $\text{HCO}_2\text{H}-\text{H}_2\text{O}$ (1:9); solvent B = $\text{HCO}_2\text{H}-\text{H}_2\text{O}-\text{MeOH}$ (1:4:5), ref [17], R_{12} detected at 210 nm using 15 mM $(\text{NH}_4)_2\text{PO}_4$ (pH 2.4).

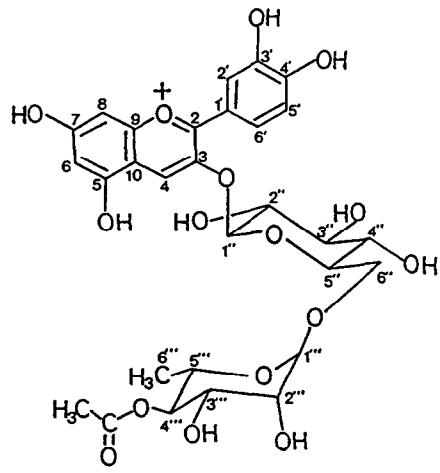
‡Observed after addition of 5% AlCl_3 -MeOH to 0.01% $\text{HCl}-\text{MeOH}$ solution of each pigment.

Table 2 ^{13}C NMR spectral data of *Eurya japonica* anthocyanin (**1**) and related compounds in δ ppm from TMS as an internal standard

Carbon	Aglcone moiety*				Sugar moiety†				
	1	Cy 3-R	Cy	Cy 3-G	Carbon	1	Cy 3-R	MG	MR
2	161.8	161.8	161.3	164.2	1"	101.6	101.8	104.3	
3	144.1	144.2	146.3	145.6	2"	74.0	73.0	74.2	
4	134.4	134.4	133.9	136.8	3"	76.2 ^a	76.3 ^a	76.9	
5	157.6	157.6	157.9	159.2	4"	69.5 ^b	69.7 ^b	70.8	
6	102.4	102.4	103.1	103.3	5"	75.7 ^a	76.0 ^a	76.9	
7	168.3	168.3	168.8	170.4	6"	66.1	66.3	61.9	
8	94.1	94.1	94.8	95.1	1'''	100.3	100.7		101.9
9	157.5	157.5	156.6	157.6	2'''	70.2 ^b	70.3 ^b		71.0
10	113.0	113.1	113.4	113.3	3'''	70.4 ^b	70.7 ^b		71.3
1'	121.5	121.7	121.7	121.2	4'''	74.0	72.0		73.1
2'	119.6	119.6	117.7	118.4	5'''	68.3	68.4		69.4
3'	146.2	146.1	147.2	147.4	6'''	17.3	17.9		17.7
4'	155.8	155.8	155.0	155.8					
5'	117.4	117.5	117.2	117.4					
6'	127.0	127.0	127.1	128.3					
C=O	170.1								

***1**, Cy 3-R *Eurya japonica* anthocyanin and cyanidin 3-rutinoside respectively were measured in $\text{CF}_3\text{CO}_2\text{D}$ -DMSO- d_6 (1·9); Cy, Cy 3-G: cyanidin and cyanidin 3-glucoside respectively were measured in $\text{DCl-CD}_3\text{OD}$ [6]

† MG,MR methyl- β -D-glucopyranoside and methyl- α -L-rhamnopyranoside respectively, were measured in D_2O [9]


^a ^b Assignments bearing the same superscript in any one spectrum may be reversed

0.5 N NaOH-MeOH aq under N_2 for 30 min at room temp., acidified with 2% HCl-MeOH and dried with Na_2SO_4 . After removal of salts by centrifugation, the red supernatant was added with excess ether and the pptd pigment was separated for analysis. Resulting supernatant was evapd to a small volume and the residue was analysed by the same HPLC system described above at 210 nm with 5 mM $(\text{NH}_4)_2\text{H}_2\text{PO}_4$ (adjusted to pH 2.4 with phosphoric acid) as an isocratic eluent.

Instrumental analyses SIMS were determined on a Hitachi M-80B mass spectrometer using Xe gas in DMSO with glycerol or benzyl alcohol as a matrix. ^1H NMR and ^{13}C NMR spectra were measured in $\text{CF}_3\text{CO}_2\text{D}$ -DMSO- d_6 (1·9) contained TMS as an int standard. ^{13}C NMR was operated at 67.94 MHz with a complete proton decoupling mode.

*Cyanidin 3-O-(6''-O-(4''-O-acetyl- α -L-rhamnopyranosyl)- β -D-glucopyranoside) (**1**)* IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3400, 1720 (acetoxyl C=O), 1630, 1580, 1270, 1040, SIMS m/z : 637 [$\text{M}+\text{H}]^+$ ($\text{C}_{29}\text{H}_{33}\text{O}_{16}$ requires 637 as the flavylum ion), 595 [$\text{M}+\text{H}-\text{Ac}]^+$ (loss of acetyl group), 449 [Cy 3-G] $^+$, 287 [Cy] $^+$; ^1H NMR (270 MHz, $\text{CF}_3\text{CO}_2\text{D}$ -DMSO- d_6 (1·9)) δ 8.85 (1H, s, H-4), 8.26 (1H, dd, $J = 8.8, 2.3$ Hz), 8.02 (1H, d, $J = 2.3$ Hz, H-2'), 7.06 (1H, d, $J = 8.7$ Hz, H-5), 6.93 (1H, br, s, H-8), 6.75 (1H, br, s, H-6), 5.44 (1H, d, $J = 7.4$ Hz, H-1'), 4.73 (1H, t, $J = 9.7$ Hz, H-4''), 4.60 (1H, d, $J = 1.2$ Hz, H-1''), 3.90 (1H, br, d, $J = 10.4$, H-6'a), 3.72~3.50 (5H, m, H-5'', 3'', 2'', 2'', 5''), 3.41 (1H, t, $J = 8.8$ Hz, H-6'b), 3.27 (1H, t, $J = 9.1$ Hz, H-3') 1.96 (3H, s, COMe), 0.90 (1H, d, $J = 6.3$ Hz, H-6'')

Acknowledgements—We are grateful to Dr Y Osajima (Kyushu University) for ^1H and ^{13}C NMR measurements, and to Dr A. Hashizume and Dr T Muraoka (Miyazaki University) for use of the IR facility. Thanks are also due to Mr R S. Richards (Minami-Kyushu University) for his careful revisions of the manuscript.

REFERENCES

- 1 Shibata, M., Takakuwa, N. and Ishikura, N. (1962) *Bot Mag Tokyo* **75**, 413.
- 2 Timberlake, C. F., Bridle, P. and Tanchev, S. S. (1971) *Phytochemistry* **10**, 165.
- 3 Harborne, J. B. and Boardley, M. (1985) *Z Naturforsch* **40c**, 305.
- 4 Koster, J., Strack, D. and Barz, W. (1983) *Planta Med.* **48**, 131.
- 5 Terahara, N. and Yamaguchi, M. (1986) *Phytochemistry* **25**, 2906.
- 6 Ikuta, H., Fukai, T., Nomura, T. and Uzawa, J. (1985) *Heterocycles* **23**, 121.
- 7 Goto, T., Takase, S. and Kondo, T. (1978) *Tetrahedron Letters* 2413.
- 8 Kondo, T., Tamura, H., Takase, S. and Goto, T. (1986) *Nihon Kagaku Kaishi* No. 11, 1571.
- 9 Gourin, P. A. J. and Mazurek, M. (1975) *Can J Chem.* **53**, 1212.
- 10 Markham, K. R. and Ternai, B. (1976) *Tetrahedron* **32**, 2607.
- 11 Chari, V. M., Jordan, M., Wagner, H. and Thies, P. W. (1977) *Phytochemistry* **16**, 1110.
- 12 Anderson, D. W., Gueffroy, D. E., Webb, A. D. and Kepner, R. E. (1970) *Phytochemistry* **9**, 1579.
- 13 Fong, R. A., Kepner, R. E. and Webb, A. D. (1971) *Am J. Ecol. Vit.* **22**, 150.
- 14 Fong, R. A., Webb, A. D. and Kepner, R. E. (1974) *Phytochemistry* **13**, 1001.
- 15 Kuroda, C. and Wada, M. (1935) *Proc Imp Acad. Tokyo* **11**, 189.
- 16 S-Moncrieff, R. (1930) *Biochem. J.* **24**, 753.
- 17 Anderson, D. M. (1987) *J. Food Sci.* **52**, 665.